

Smart Mining Complexes and Mineral Value Chains: A technological perspective on risk management and sustainability

Roussos Dimitrakopoulos

COSMO – Stochastic Mine Planning Laboratory - <u>http://cosmo.mcgill.ca/</u>

Outline

- Introduction
- Modelling mining complexes / mineral value chains with uncertainty
- Stochastic simultaneous optimization and advantages
- Examples: Higher value for lower risk
- Conclusions

Mining Complexes and Mineral Value Chains

A mining complex may be seen as an *integrated business* starting from the extraction of materials to a set of sellable products delivered to various customers and/or spot market

Introduction - Conventional Workflow

Introduction – Deterministic Workflow

Introduction – Stochastic Workflow

A set of the above scenarios is the quantified model of geological uncertainty

Introduction – Innovation & cross disciplinary integration

Bench in a gold deposit being mined

Real blast hole data

Black indicates DDH grade above 1.3 g/t and grey between 0.7 and 1.3 g/t

Real mineral deposits are highly variable, not smooth

10x10x5m blocks

Introduction – Stochastic Workflow

Quantified Uncertainty about a Gold Deposit

A mature, well drilled and understood gold deposit

Model characteristics:

3 simulated scenarios of the same section (SMU grade)

o Large number of blocks o Multiple domains o 20 simulations: 557 million nodes 27 million mining blocks

Introduction – Risk Management and Risk Reporting

Risk in Mining Australasian Examples

Core issue in deviations from expectations:

Geological uncertainty

Reporting Risk - Example: NPV Distribution

Stochastic schedule within the

Deterministically optimal pit limits

Stochastically optimal pit limits

Stochastic vs Deterministic Scheduling Approaches

- O Lower risk in meeting forecasts
- **O** Higher value for less risk
- O Larger pit limits
- O More metal

Approaches to Uncertainty

• An Example:

Calculating the economic value of a block using a marginal cut-off grade

Probability Distribution of a Block's Copper Grade

Deterministic Approach to Uncertainty

A block's economic value, according to a deterministic optimizer

Copper price: \$4410/t (\$2/lb Cu) Recovery: 90% Processing cost: \$6/t Mining cost: \$2/t Block tonnage: 14465 t

Estimated ('expected' or average) grade: 0.118% Cu

 $\$ Value = \begin{cases} \$4410 \cdot 0.9 \cdot \frac{0.118}{100} \cdot 14465 - (\$2 + \$6) \cdot 14465 = \$ - 47974 & \text{if processed as ore} \\ -\$2 \cdot 14465 = \$ - 28930 & \text{if processed as waste} \end{cases}$

This block's estimated grade lies below the marginal cut-off grade. A deterministic optimizer will *only* mine this block as waste, with a value of \$-28930.

Stochastic Approach to Uncertainty

A block's economic value, according to a stochastic optimizer

A stochastic optimizer *may* choose to mine this block with an expected value of \$21457. However, this is a <u>risky</u> block if we wish to feed a mill up to its capacity

Stochastic optimizers account for this risk, in addition to its potential value

Stochastic Integer Programming

The objective function is

Maximize $(s_{11}x_1^1 + s_{21}x_2^1 + ..., s_{12}x_1^1 + s_{22}x_2^1 + ...)$...

Subject to

$$S_{11}X_{1}^{1} + S_{21}X_{2}^{1} + \dots = b_{1}$$

$$S_{11}X_{1}^{p} + S_{21}X_{2}^{p} + \dots = b_{1}$$

$$S_{12}X_{1}^{p} + S_{22}X_{2}^{p} + \dots = b_{1}$$

$$S_{1r}X_{1}^{p} + S_{2r}X_{2}^{p} + \dots = b_{1}$$

Period 1 Simulated model 1 Simulated model 2 Simulated model r Period p

CHANGE CONTEXT and USE ONLY geological attributes: Material Types, Grades

(METAL*RECOV 2RY*PRICE - ORL*COSTP)

- ROCK*COSTM

Simultaneous Optimization of Mining Complexes - Mineral Value Chains for

Decision Support

Extending models

Simultaneous Optimization of Mining Complexes

Example: Nickel laterite mineral value chain - Blending policy optimization

Nickel Laterite Complex – Risk Analysis of Deterministic Design

Nickel Laterite Complex – Deterministic Simultaneous Optimization

Nickel Laterite Complex – Risk Analysis of Deterministic Design

Stochastic Simultaneous Optimization

Stochastic Simultaneous Optimization

Nickel Laterite Complex - Stochastic Simultaneous Optimization

Modelling Mining Complexes with Uncertainty

New mathematical models

Stochastic Optimisation Formulation

• Adaptable two-stage stochastic integer programming model with CAPEXs:

Stochastic Simultaneous Optimization Formulation

• Adaptable two-stage stochastic integer programming model:

- 1. Risk reduction.
- 2. Risk deferral (geological risk discounting).

Stochastic Optimisation Formulation

• Adaptable two-stage stochastic integer programming model with CAPEXs:

$$\max \frac{1}{\|\mathbb{S}\|} \sum_{t \in \mathbb{T}} \sum_{s \in \mathbb{S}} \sum_{a \in \mathbb{A}} p_{a,t} \cdot v_{a,t,s} - \frac{1}{\|\mathbb{S}\|} \sum_{t \in \mathbb{T}} \sum_{s \in \mathbb{S}} \sum_{a \in \mathbb{A}} (c_{a,t}^+ \cdot u_{a,t,s} + c_{a,t}^- \cdot l_{a,t,s}) - \sum_{t \in \mathbb{T}} \sum_{k \in \mathbb{K}} p_{k,t} \cdot w_{k,t} \int \mathbf{CAPEX discounted cash flow}$$

$$v_{a,t,s} - u_{a,t,s} \leq U_{a,t} + \sum_{t'=t-\lambda_k+\tau_k}^{t} \kappa_{a,k} \cdot w_{k,t'} \sum_{u=t-\lambda_k+\tau_k}^{t} \kappa_{a,k} \cdot w_{k,t'}$$

$$\sum_{t'=t-\lambda_k+\tau_k}^{t} \kappa_{a,k} \cdot w_{k,t'} = \sum_{u=t}^{t} \sum_{k \in \mathbb{K}} \sum_{u=t-\lambda_k+\tau_k}^{t} \kappa_{a,k} \cdot w_{k,t'}$$

$$\sum_{u=t-\lambda_k+\tau_k}^{t} \kappa_{a,k} \cdot w_{k,t'}$$

Modelling Mining Complexes with Uncertainty

Modelling Mining Complexes with Uncertainty

Modelling Mining Complexes with Uncertainty

There is no need to simplify our models of the value chain

The Twin Creeks Gold Mining Complex, Nevada

Twin Creeks (TC) gold mining complex

Twin Creeks Gold Mining Complex, Nevada

Base Case

Long-term Production Schedule

& Risk Analysis

Base case - Sources of supply uncertainty

Other Sources

Base case - DCF & Risk analysis

Base case - Gold recovered & Risk analysis

Base case - Gold recovered & Risk analysis

Base case - Blending: Acid consumption

Twin Creeks Gold Mining Complex, Nevada

Stochastic Long-term Production Schedule

Production schedule (I):

within the conventionally 'optimal' pit

Production schedule (II): without imposed pit limits

Stochastic schedule I - Cumulative DCF

42

Stochastic schedule I - Recovered gold

Stochastic schedule I - Recovered gold

Stochastic schedule I – Blending: Acid consumption

Stochastic schedule I - Sections

Stochastic schedule II - More ore, larger pit

Simultaneous optimization of the mining complex decides the pit limits: 1 extra year of ore to the autoclave (Pit 11% larger)

Optimizing with Joint Supply (metal) and Demand (commodity price) Uncertainty

Contracts & Value Chain Optimizers

<u>Joint</u> metal (*S*) and commodity price (*S'*) uncertainty

Objective function

 $\begin{aligned} & \mathsf{Maximize} \sum_{sxs'} \sum_{t} \frac{1}{[1+\gamma]^t} \Big[Revenue_{t,s} - ProductionCost_{t,s} - TransCost_{t,s} \Big] - TransCapInvst \end{aligned}$

Contract Design: Numerical Results

• Optimal contract price – for a given mining complex under joint metal and commodity price uncertainty

Conclusions

- Stochastic simultaneous optimization coordinates LOM production schedules, destination policies and processing streams.
- Focus on value of products sold rather than materials mined.
- Decentralized approach for evaluating processing streams permits **detailed modelling**, including geometallurgical responses.
- Nickel laterite example shows ability to create multi-element blending policies while considering uncertainty.
- Copper mining complex demonstrates ability to simultaneously optimize production rates, with **less risk and higher NPV**.

Thanks are in order to our

Cosmo Industry Members and Government Research Funding Agencies

New Scholarship: MES-COSMO Scholarship 2016-2020 (3,000\$/year)

For undergraduate students working on projects related to:

Strategic mine planning optimization under uncertainty and related risk management

MEG

Details to appear shortly on: http://www.cimmes.org/

COSMO Mining Industry Consortium &

Algorithmic Optimization with Metaheuristics

• Computationally prohibitive optimization models, in the past.

- 9,000 joint scenarios
- 18,750,000 scheduling decision variables
- 62,500 destination policy variables
- 540,000 processing stream variables

Algorithmic Optimization with Metaheuristics

Particle Swarm OptimizationRobust destination policies $(d_{c,j,t})$ Processing stream variables* $(p_{i,j,t,s})$ Capital expenditures $(w_{k,t})$

Simulated Annealing Robust destination policies $(d_{c,j,t})$ Robust production schedule* $(x_{b,t})$

Capital expenditures $(w_{k,t})$

Introduction – Innovation & cross disciplinary integration

Bench in a gold deposit being mined

Black indicates DDH grade above 1.3 g/t and grey between 0.7 and 1.3 g/t

Real blast hole data

Real mineral deposits are not smooth

10x10x5m blocks

Blastholes grades and simulated blasthole grades from exploration data

Introduction – Innovation & building blocks

The Representation of Mineral Deposit and Attributes MATTERS to Mine Planning Optimization: *Estimated* (-) *vs simulated* models (=) as inputs ...

Misrepresentation from smoothing seen above in grade-tonnage curves (from any estimation method, including the "averages" from simulated realizations), *has adverse effects on the deterministic optimization conventionally utilized in mine planning.*

Sources of Uncertainty

Other fields of Engineering: Petroleum Reservoir Engineering has moved away from Estimation models since the late 1980's (from the Stanford U related research)

Forecasts above come from multiphase flow simulation

THE CORE REASON WE USE SIMULATED DEPOSITS IN RESERVOIR FORECASTING

59