So we've survived ... What now?

Canadian Engineering Associates Good People doing Good Work

> CIM Management and Economics Society Toronto Discussion Group Borden Ladner Gervais, Toronto 20180228

Vision Statement

To provide quality engineering and consulting services to the global metallurgical industry by employing skilled competent experienced personnel that mitigate the need for cumbersome systems and procedures by simply knowing what they are doing and doing it well. This delivers lean rapid highly-successful outcomes in а collegial atmosphere of mutual trust and respect.



The Distinguished Lecturers series has been generously funded since 1972 by the CIM Foundation.

KNOWLEDGE IS POWER. CIM EMPOWERS YOU.

The Boom Years

CA ENG

The Boom Years

Good People doing Good Work

The Boom Years

Rapid Expansion

- ∡ Focus on Capacity
- Expand at High Cost

Projects

- EPCM Dominates
- ▲ Overruns

Not The Boom Years

CA ENG

Not The Boom Years

Not The Boom Years

Cost Cutting

Focus on Reduced Spending

Projects

- ▲ Lump Sum
- More Controls

Shed non-core Growth of 2nd and 3rd tier Focus on **Minimising** Cost Head **Balance Sheet** Grades Reduction of Debt **Decline** Divestments Write downs

Herd Mentality The Last Prolonged Upswing

Growth at high (any?) cost

- Dilution of fixed cost
- Consolidation
- ▲ Bigger is better
- A Risk is acceptable as the returns are there
- Fast track projects producing record overruns
- Shortage of skills leads to plethora of management systems

Canadian Engineering As occup Good People doing Good Work CV ENC

Herd Mentality The Last Prolonged Upswing

How did that play out for shareholders, employees?

What happened when the party was over?

Canadian Engineering Assocrates Good People doing Good Work CV ENC

Herd Mentality The Last Prolonged Upswing

Debt and loan servicing

- ▲ Cost cutting deep
- ▲ Write downs
- Hollowing out of skills (baby with the bathwater effect)
- Entrenched systems
- Residual shareholder expectations

Canadian Engineering As occase Good People doing Good Work CV EV

C

Herd Mentality The Last Prolonged Decline

Cost cutting at high (any?) cost

- ▲ O/H reduction
- Minimised Sustaining Capital
- Minimized Maintenance
- Operating Staff Reductions
- Projects on hold/terminated
- ▲ Fire sales to ease debt
- ▲ % EBITDA protected

Canadian Engineering Association Good People doing Good Work CΛ ΞΝ

C

Herd Mentality The Last Prolonged Decline

And how will that play out for shareholders, employees?

Canadian Engineering As occupe Good People doing Good Work CV ENC

Herd Mentality The Last Prolonged Decline

Today, we face many issues

- ▲ Approaching skill shortage
- ▲ Aging Equip/Infrastructure
- Head grades still declining
- ▲ Asian competition
- A Residual shareholder expectations

Canadian Engineering As ocra Good People doing Good Work CV EV

C

02

01

Adage "90% of Returns come with 50% of the effort"

04

05

06

02

01

Flipside It takes 50% of the effort for 10% of the returns

04

05

06

03

02

01

Obsession With the 10% (milking the last drop)

which takes disproportional effort

04

06

05

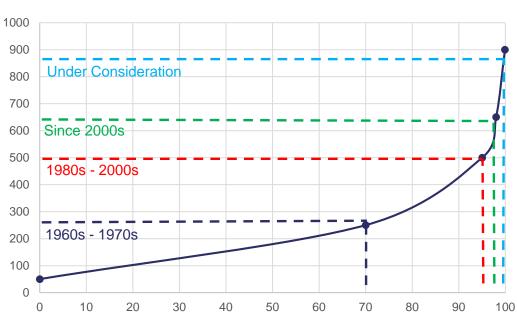
03

02

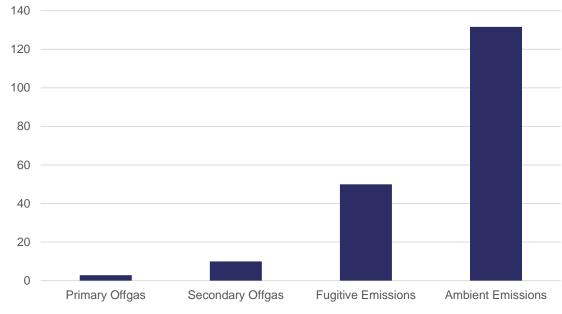
01

When does it make sense to invest in added capacity?

04

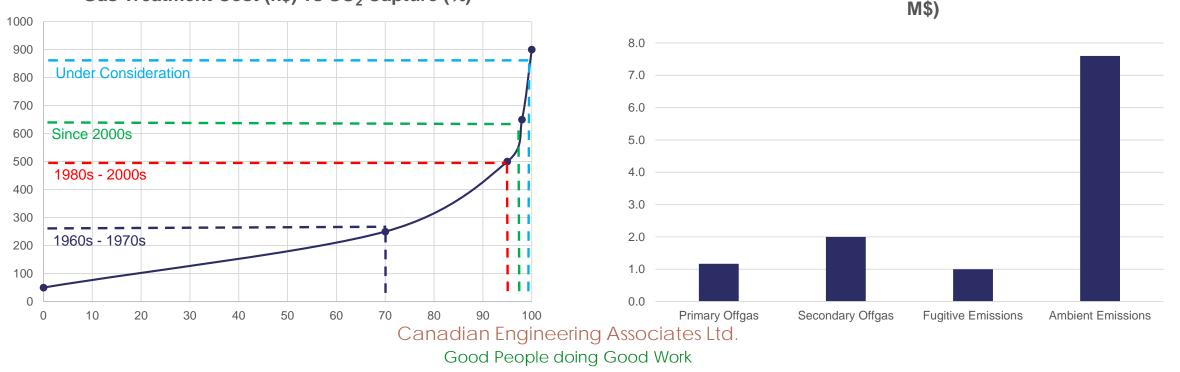

05

06


07

Beware of promises that the last 10% is easy

Copper Smelter Emissions



Copper Smelter Emissions

The power of the diminishing denominator

Gas Treatment Cost (k\$) vs SO₂ Capture (%)

Relative Emission Reduction per Cost (% redn /

Law of Diminishing Returns CA ENC 01 02 03 04 05 06 07

Understand the Big Picture

Don't fall for the "denominator" trick that exaggerates benefit

Find a new COW, don't obsess with the last drop of milk

Efficiency vs Redundancy

03

02

01

Efficient Systems use a high proportion of total available capacity

04

05

06

Redundancy is installed available capacity to deal with perturbation

Efficiency vs Redundancy

02

THESE ARE OPPOSITES

06

CA = NC

Is the 5% increase of efficiency improvement worth the 50% decrease in redundancy?

The only constant in mining is the variability, which favours redundancy

August 14th 2003 Blackout

Efficiency vs Redundancy

03

August 14th 2003 Blackout

02

US/Canada Power Grid HIGHLY Optimized (Over 98% Efficient @ peak load)

 $\cap \Delta$

06

05

- ▲ Trees brushed against transmission line in Ohio
- ▲ Alarm system failed to warn of issue
- ▲ Pushed local system over limit, led to shutdown of 3 other lines
- ▲ System now asking over 100%, cascade shutdown
- ▲ 11 lives lost, \$6B losses

01

- ▲ System continues to run at high efficiency, it will happen again
- ▲ \$6B = 40,000km of redundant transmission lines

Efficiency vs Redundancy

03

02

01

Improved Efficiency Inherently Brings Increased Risk

 $\cap 4$

05

06

07

This needs to be acknowledged during decision making

03

02

Commonly held Misconceptions

06

05

Technology is inexpensive

Canadian Engineering Associates Ltd. Good People doing Good Work

03

02

Development times are long

05

06

With Sincere Apologies to RioTinto Australia! Original Schedule: Complete July 2014

> First PILOT Run: Sept 2017

Canadian Engineering Associates Ltd. Good People doing Good Work

03

02

Cost overruns rampant

05

Original Budget: Difficult to establish but Around \$40 - 50M

06

(200 Locos, 25 trains)

Spend to Date: At least \$317.5M

(About the cost of 200 locos)

Canadian Engineering Associates Ltd. Good People doing Good Work

03

02

Benefit

Labour Saving

05

Reduction in operator costs significantly offset by increase in skilled labour cost

06

Reduced Cycle Time

- Elimination of rolling stock
- Lower Maintenance Cost
 - Per km

Canadian Engineering Associates Ltd. Good People doing Good Work

Toronto Mostly Cloudy

7:40 AM

Toronto Mostly Cloudy

7:40 AM

-20

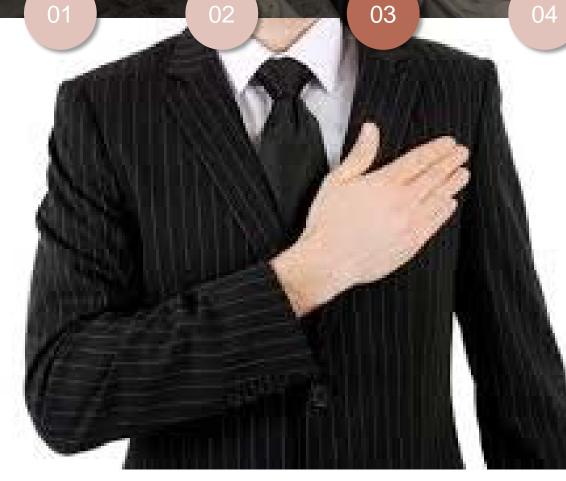
Commonly held Misconceptions

Technology is Stable

The more COMPLEX the system, the less reliable

Toronto Mostly Cloudy

7:40 AM


Toronto Mostly Cloudy

7:40 AM

Steady increase in "glitchiness"

CA ENC

"Ingenuity Gap"

Technology offers great promise

06

Still in its infancy

05

Go in with eyes wide open and don't believe the promises made

Technology is great, but...

03

KEEP CALM AND Keep it SIMPLE

Apply the KISS principle

05

The Promise for Underground Production Optimization Systems

06

Endemic Wireless Real Time Scheduling Optimization

Canadian Engineering Associates Ltd. Good People doing Good Work

Technology is great, but...

03

KEEP CALM AND Keep it SIMPLE

The real world biggest benefit?

06

Not the last 10%, more fundamental!

Knowing where your people and equipment are

05

Being able to COMMUNICATE with them

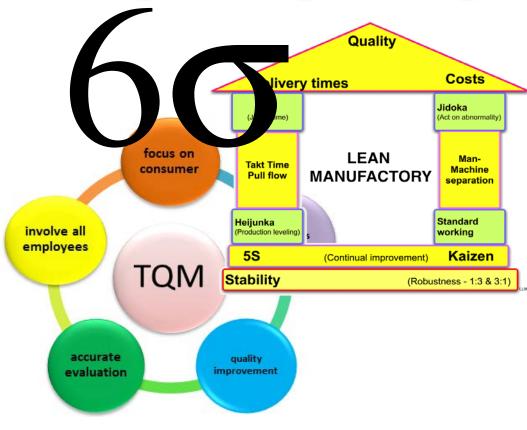
Canadian Engineering Associates Ltd. Good People doing Good Work

Technology is great, but...

03

02

Remember the losses on the overrun projects from the last cycle?


06

Don't make the Same mistake on massive technology adoptions

05

Canadian Engineering Associates Ltd. Good People doing Good Work

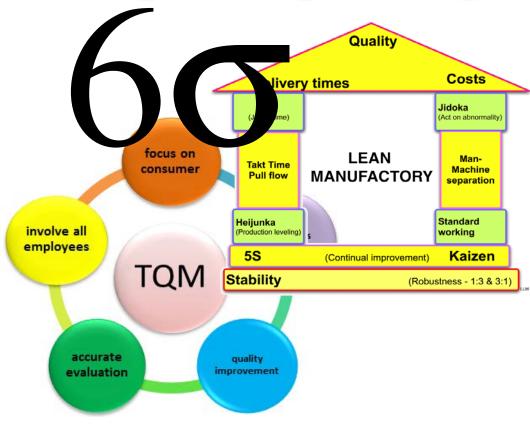
03

02

01

Think before Embarking on Optimizations, and Stop Kidding Yourself

05


06

Benefits typically exaggerated using the diminishing denominator

10% reduction in losses, not **1%** improvement in throughput (and less than 1% of revenue; variable cost)

Canadian Engineering Associates Ltd. Good People doing Good Work

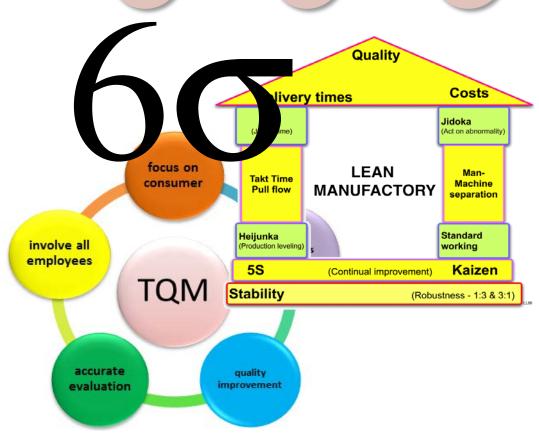
03

02

01

Think before Embarking on Optimizations, and Stop Kidding Yourself

05


06

Frequently assumes stable measurable inputs

First time you really know the ore is when it is metal

Canadian Engineering Associates Ltd. Good People doing Good Work

03

02

01

Factors affecting throughput

06

- ⊿ Weather
- Rock Mechanics

05

- ▲ Dilution Control
- ▲ Grindability
- ▲ Floatability
- ▲ Filterability
- ▲ Heat Value
- Minor Elements
- ⊿ Labour
- Supply Chain (in and out)
- Maintenance/Availability
- Political Stability
- Social Licence
- Many many others

ALL HAVE SIGNFICANTLY MORE VARIABILITY IN MINING

Canadian Engineering Associates Ltd.

04

Good People doing Good Work

Before focussing on the expensive "easy stuff"

06

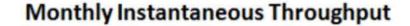
Sophisticated control of

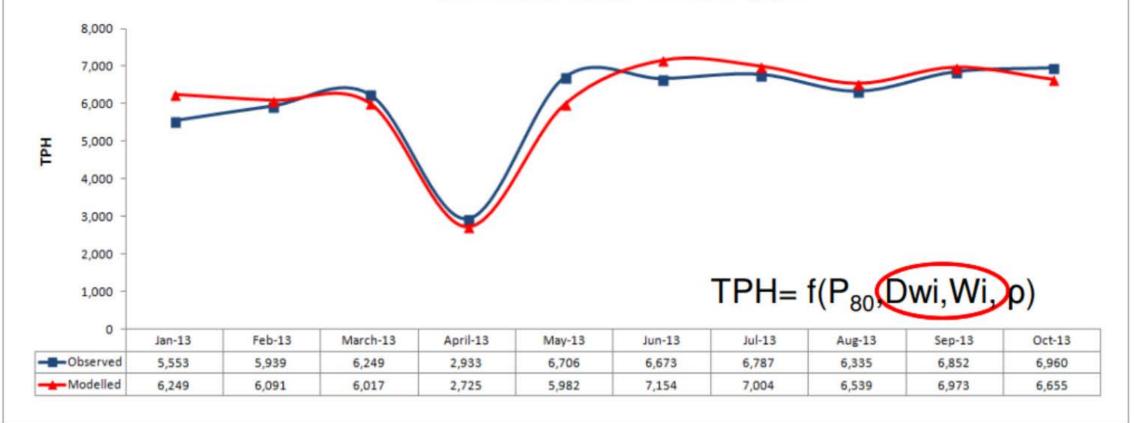
05

- Supply chain
- Maintenance/reliability
- Production

Canadian Engineering Associates Ltd. Good People doing Good Work

02


Look at the inexpensive "difficult stuff"


05

06

- Do your mine planners talk to your miners?
- Do you miners talk to the mineral processors?
- ▲ Do they talk to the smeltermen?
- Do your smeltermen talk to your mine planners?

Canadian Engineering Associates Ltd. Good People doing Good Work

Unit Production Cost

03

Companies Compete on Unit Cost (e.g. Gold Industry AISC in \$/oz)

04

06

05

Decade of focus on \$\$\$s

02

Easy to flip to focus on oz/lbs/tonnes (like the last boom)

Unit Production Cost

02

Discipline to weight EQUALLY

Decreasing the numerator with cost reduction, and

03

Increasing the denominator with production increases

Canadian Engineering Associates Ltd. Good People doing Good Work

04

06

Unit Production Cost

02

HONESTY to accept that one affects the other:

04

06

05

Mantra of consequence free cost reduction must stop

Acceptance that increased production carries cost

03

Analysis, Analytics, IntelligenceCA

04

05

06

Demystify the Hype

Analytics have been around for MANY decade

03

Sophisticated multivariable regressive correlative modelling and control

All analytics and artificial intelligence relies on very simple principles

Analysis, Analytics, IntelligenceCA ENG

03

How to be artificially intelligent!

04

05

06

Log lots and lots of data

Plot everything against everything, and their squares, and their log (and the fourier transformation if you are seeking cyclic), etc

Do the same with group of data streams

Note any that have a high R², and use this relation as a control parameter

You have just performed analytics and achieved intelligence

Analysis, Analytics, IntelligenceCA ENC

04

05

06

03

02

Difference today is that large computational power allows this is real time.

Undiscussed downside: Identifies correlations but bad at cause and effect

Acknowledge the Capability of employees

06

05

07

03

02

Train them, for real!

05

Field training, paid mentoring, apprenticeships

06

07

Canadian Engineering Associates Ltd. Good People doing Good Work

Don't put shareholder returns ahead of employee Satisfaction

06

05

07

Encourage COMUNICATION, within and outside the company

06

05

07

Attract good people

05

06

07

For Millennials/Gen-X in particular, this means \$\$\$s

Conclusion

The future is in our people, not our systems and devices

02		>

Beware promises of great gains, don't be in the next herd racing towards unwise investments

03

01

05

Rapid data analysis is valuable (analytics), but skilled persons doing effective evaluation is still key

Efficiency carries risk, increasing capacity less so.

Give equal weight to \$\$\$s and tonnes, and understand how they affect each other

